claf.tokens.token_embedder package¶
Submodules¶
-
class
claf.tokens.token_embedder.base.
TokenEmbedder
(token_makers)[source]¶ Bases:
torch.nn.modules.module.Module
Token Embedder
Take a tensor(indexed token) look up Embedding modules.
- Args:
token_makers: dictionary of TokenMaker (claf.token_makers.token)
-
forward
(inputs, params={})[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
-
class
claf.tokens.token_embedder.basic_embedder.
BasicTokenEmbedder
(token_makers)[source]¶ Bases:
claf.tokens.token_embedder.base.TokenEmbedder
Basic Token Embedder
Take a tensor(indexed token) look up Embedding modules. Output is concatenating all embedded tensors.
- Args:
token_makers: dictionary of TokenMaker (claf.tokens.token_maker)
-
forward
(inputs, except_keys=[], params={})[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
-
class
claf.tokens.token_embedder.reading_comprehension_embedder.
RCTokenEmbedder
(token_makers)[source]¶ Bases:
claf.tokens.token_embedder.base.TokenEmbedder
Reading Comprehension Token Embedder
Take a tensor(indexed token) look up Embedding modules. Inputs are seperated context and query for individual token setting.
- Args:
token_makers: dictionary of TokenMaker (claf.tokens.token_maker) vocabs: dictionary of vocab
{“token_name”: Vocab (claf.token_makers.vocaburary), …}
-
EXCLUSIVE_TOKENS
= ['exact_match']¶
-
forward
(context, query, context_params={}, query_params={}, query_align=False)[source]¶ - Args:
context: context inputs (eg. {“token_name1”: tensor, “token_name2”: tensor, …}) query: query inputs (eg. {“token_name1”: tensor, “token_name2”: tensor, …})
- Kwargs:
context_params: custom context parameters query_params: query context parameters query_align: f_align(p_i) = sum(a_ij, E(qj), where the attention score a_ij
captures the similarity between pi and each question words q_j. these features add soft alignments between similar but non-identical words (e.g., car and vehicle) it only apply to ‘context_embed’.
Module contents¶
-
class
claf.tokens.token_embedder.
BasicTokenEmbedder
(token_makers)[source]¶ Bases:
claf.tokens.token_embedder.base.TokenEmbedder
Basic Token Embedder
Take a tensor(indexed token) look up Embedding modules. Output is concatenating all embedded tensors.
- Args:
token_makers: dictionary of TokenMaker (claf.tokens.token_maker)
-
forward
(inputs, except_keys=[], params={})[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
-
class
claf.tokens.token_embedder.
RCTokenEmbedder
(token_makers)[source]¶ Bases:
claf.tokens.token_embedder.base.TokenEmbedder
Reading Comprehension Token Embedder
Take a tensor(indexed token) look up Embedding modules. Inputs are seperated context and query for individual token setting.
- Args:
token_makers: dictionary of TokenMaker (claf.tokens.token_maker) vocabs: dictionary of vocab
{“token_name”: Vocab (claf.token_makers.vocaburary), …}
-
EXCLUSIVE_TOKENS
= ['exact_match']¶
-
forward
(context, query, context_params={}, query_params={}, query_align=False)[source]¶ - Args:
context: context inputs (eg. {“token_name1”: tensor, “token_name2”: tensor, …}) query: query inputs (eg. {“token_name1”: tensor, “token_name2”: tensor, …})
- Kwargs:
context_params: custom context parameters query_params: query context parameters query_align: f_align(p_i) = sum(a_ij, E(qj), where the attention score a_ij
captures the similarity between pi and each question words q_j. these features add soft alignments between similar but non-identical words (e.g., car and vehicle) it only apply to ‘context_embed’.